Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining

نویسندگان

  • Patrick T. McCarthy
  • Kevin J. Otto
  • Masaru P. Rao
چکیده

Neural prosthetic interfaces based upon penetrating microelectrode devices have broadened our understanding of the brain and have shown promise for restoring neurological functions lost to disease, stroke, or injury. However, the eventual viability of such devices for use in the treatment of neurological dysfunction may be ultimately constrained by the intrinsic brittleness of silicon, the material most commonly used for manufacture of penetrating microelectrodes. This brittleness creates predisposition for catastrophic fracture, which may adversely affect the reliability and safety of such devices, due to potential for fragmentation within the brain. Herein, we report the development of titanium-based penetrating microelectrodes that seek to address this potential future limitation. Titanium provides advantage relative to silicon due to its superior fracture toughness, which affords potential for creation of robust devices that are resistant to catastrophic failure. Realization of these devices is enabled by recently developed techniques which provide opportunity for fabrication of high-aspect-ratio micromechanical structures in bulk titanium substrates. Details are presented regarding the design, fabrication, mechanical testing, in vitro functional characterization, and preliminary in vivo testing of devices intended for acute recording in rat auditory cortex and thalamus, both independently and simultaneously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Implementation Challenges of Microelectrode Arrays: A Review

The emerging field of neuroprosthetics is focused on design and implementation of neural prostheses to restore some of the lost neural functions. Remarkable progress has been reported at most bioelectronic levels—particularly the various brain-machine interfaces (BMIs)—but the electrode-tissue contacts (ETCs) remain one of the major obstacles. The success of these BMIs relies on electrodes whic...

متن کامل

Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing

Neural sensing and stimulation have been the backbone of neuroscience research, brain-machine interfaces and clinical neuromodulation therapies for decades. To-date, most of the neural stimulation systems have relied on sharp metal microelectrodes with poor electrochemical properties that induce extensive damage to the tissue and significantly degrade the long-term stability of implantable syst...

متن کامل

Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects

The emerging field of neuroprosthetics is focused on the development of new therapeutic interventions that will be able to restore some lost neural function by selective electrical stimulation or by harnessing activity recorded from populations of neurons. As more and more patients benefit from these approaches, the interest in neural interfaces has grown significantly and a new generation of p...

متن کامل

Investigations on Explanted Micromachined Nerve Electrodes

Micromachining technologies have been used to manufacture neural microelectrodes for roughly a decade. One promising approach utilizes polyimide as a flexible and light-weighted substrate that carries electrode contacts, tracks, and connector pads. Beyond encouraging results, mainly gained in acute animal trials and in vitro tests, the reliability of this technology needs to be proved. The pres...

متن کامل

Lower layers in the motor cortex are more effective targets for penetrating microelectrodes in cortical prostheses.

Improving cortical prostheses requires the development of recording neural interfaces that are efficient in terms of providing maximal control information with minimal interface complexity. While the typical approaches have targeted neurons in the motor cortex with multiple penetrating shanks, an alternative approach is to determine an efficient distribution of electrode sites within the layers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2011